skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Sagastizábal, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sagastizábal, C (Ed.)
    The convergence theory for the gradient sampling algorithm is extended to directionally Lipschitz functions. Although directionally Lipschitz functions are not necessarily locally Lipschitz, they are almost everywhere differentiable and well approximated by gradients and so are a natural candidate for the application of the gradient sampling algorithm. The main obstacle to this extension is the potential unboundedness or emptiness of the Clarke subdifferential at points of interest. The convergence analysis we present provides one path to addressing these issues. In particular, we recover the usual convergence theory when the function is locally Lipschitz. Moreover, if the algorithm does not drive a certain measure of criticality to zero, then the iterates must converge to a point at which either the Clarke subdifferential is empty or the direction of steepest descent is degenerate in the sense that it does lie in the interior of the domain of the regular subderivative. 
    more » « less